AMNS

A PRACTICAL APPROACH
TO COMPUTER ALGORITHMS

Essential Algorithms

A Practical Approach to Computer
Algorithms

Rod Stephens

o WILEY

Essential Algorithms: A Practical Approach to Computer Algorithms
Published by

John Wiley & Sons, Inc.

10475 Crosspoint Boulevard

Indianapolis, IN 46256

www.wiley.com

Copyright © 2013 by John Wiley & Sons, Inc., Indianapolis, Indiana
Published simultaneously in Canada

ISBN: 978-1-118-61210-1

ISBN: 978-1-118-61276-7 (ebk)

ISBN: 978-1-118-79729-7 (ebk)

No part of this publication may be reproduced, stored in a retrieval system
or transmitted in any form or by any means, electronic, mechanical,
photocopying, recording, scanning or otherwise, except as permitted under
Sections 107 or 108 of the 1976 United States Copyright Act, without
either the prior written permission of the Publisher, or authorization
through payment of the appropriate per-copy fee to the Copyright
Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978)
750-8400, fax (978) 646-8600. Requests to the Publisher for permission
should be addressed to the Permissions Department, John Wiley & Sons,
Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201)
748-6008, or online at http://www.wiley.com/ go/
permissions .

Limit of Liability/Disclaimer of Warranty: The publisher and the
author make no representations or warranties with respect to the accuracy
or completeness of the contents of this work and specifically disclaim all
warranties, including without limitation warranties of fitness for a
particular purpose. No warranty may be created or extended by sales or
promotional materials. The advice and strategies contained herein may not
be suitable for every situation. This work is sold with the understanding
that the publisher is not engaged in rendering legal, accounting, or other

742

http://www.wiley.com
http://www.wiley.com/go/permissions
http://www.wiley.com/go/permissions

professional services. If professional assistance is required, the services of
a competent professional person should be sought. Neither the publisher
nor the author shall be liable for damages arising herefrom. The fact that
an organization or Web site is referred to in this work as a citation and/or
a potential source of further information does not mean that the author or
the publisher endorses the information the organization or website may
provide or recommendations it may make. Further, readers should be
aware that Internet websites listed in this work may have changed or
disappeared between when this work was written and when it is read.

For general information on our other products and services please contact
our Customer Care Department within the United States at (877)
762-2974, outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats and by
print-on-demand. Some material included with standard print versions of
this book may not be included in e-books or in print-on-demand. If this
book refers to media such as a CD or DVD that is not included in the
version you purchased, you may download this material at
http://booksupport.wiley.com . For more information about
Wiley products, visit www.wiley.com .

Library of Congress Control Number: 2013941603

Trademarks: Wiley and the Wiley logo are trademarks or registered
trademarks of John Wiley & Sons, Inc. and/or its affiliates, in the United
States and other countries, and may not be used without written
permission. All other trademarks are the property of their respective
owners. John Wiley & Sons, Inc. is not associated with any product or
vendor mentioned in this book.

743

http://booksupport.wiley.com
http://www.wiley.com

About the Author

Rod Stephens started out as a mathematician, but while studying at MIT,
he discovered how much fun algorithms are. He took every algorithms
course MIT offered and has been writing complex algorithms ever since.

During his career, Rod has worked on an eclectic assortment of
applications in such fields as telephone switching, billing, repair
dispatching, tax processing, wastewater treatment, concert ticket sales,
cartography, and training for professional football players.

Rod is a Microsoft Visual Basic Most Valuable Professional (MVP) and
has taught introductory programming at ITT Technical Institute. He has
written more than 2 dozen books that have been translated into languages
from all over the world. He has also written more than 250 magazine
articles covering C#, Visual Basic, Visual Basic for Applications, Delphi,
and Java.

Rod's popular VB Helper website (www.vb-helper.com) receives
several million hits per month and contains tips, tricks, and example
programs for Visual Basic programmers. His C# Helper website
(www.csharphelper.com) contains similar material for C#
programmers.

You can contact Rod at RodStephens@vb-helper.com or
RodStephens@csharphelper.com

744

http://www.vb-helper.com
http://www.csharphelper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@vb-helper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@csharphelper.com

Credits
Executive Editor
Robert Elliott

Project Editor
Tom Dinse

Technical Editors
David Coleman
Jack Jianxiu Hao

George Kocur

Production Editor

Daniel Scribner

Copy Editor
Gayle Johnson

Editorial Manager
Mary Beth Wakefield

Freelancer Editorial Manager
Rosemarie Graham

Associate Director of Marketing
David Mayhew

Marketing Manager
Ashley Zurcher

Business Manager
Amy Knies

745

Production Manager
Tim Tate

Vice President and Executive Group Publisher
Richard Swadley

Vice President and Executive Publisher
Neil Edde

Associate Publisher
Jim Minatel

Project Coordinator, Cover
Katie Crocker

Proofreader
Josh Chase, Word One

Indexer
Robert Swanson

Cover Designer
Ryan Sneed

746

Acknowledgments

Thanks to Bob Elliott, Tom Dinse, Gayle Johnson, and Daniel Scribner for
all of their hard work in making this book possible. Thanks also to
technical editors George Kocur, Dave Colman, and Jack Jianxiu Hao for
helping ensure the information in this book is as accurate as possible.
(Any remaining mistakes are mine not theirs.)

747

Contents at a Glance

Introduction XV
Chapter 1 Algorithm Basics 1
Chapter 2 Numerical Algorithms 25
Chapter 3 Linked Lists 55
Chapter 4 Arrays 83
Chapter 5 Stacks and Queues 11
Chapter 6 Sorting 131
Chapter 7 Searching 163
Chapter 8 Hash Tables 169
Chapter 9 Recursion 185
Chapter 10 Trees 227
Chapter 11 Balanced Trees 277
Chapter 12 Decision Trees 297
Chapter 13 Basic Network Algorithms 325
Chapter 14 More Network Algorithms 355
Chapter 15 String Algorithms 7
Chapter 16 Cryptography 397
Chapter 17 Complexity Theory 419
Chapter 18 Distributed Algorithms 435
Chapter 19 Interview Puzzles 445
Appendix A Summary of Algorithmic Concepts 477
Appendix B Solutions to Exercises 487
Glossary 559

Index 573

Contents

Introduction xv
Chapter 1 Algorithm Basics 1
Approach 2

Algorithms and Data Structures 3

Pseudocode 3

Algorithm Features 6

Big O Notation 7

Common Runtime Functions 11

Visualizing Functions 17

Practical Considerations 17

Summary 19

Exercises 2(0)

Chapter 2 Numerical Algorithms 25
Randomizing Data 25

Generating Random Values 25

Randomizing Arrays 31

Generating Nonuniform Distributions 33

Finding Greatest Common Divisors 33

Performing Exponentiation 35

Working with Prime Numbers 36

Finding Prime Factors 37

Finding Primes 39

Testing for Primality 40

Performing Numerical Integration 42

The Rectangle Rule 12

The Trapezoid Rule 43

vit

vii Contents

Adaptive Quadrature

Monte Carlo Integration

Finding Zeros

Summary

Exercises

Chapter 3 Linked Lists

Basic Concepts

Singly Linked Lists

Iterating Over the List

Finding Cells

Using Sentinels

Adding Cells at the Beginning

Adding Cells at the End

Inserting Cells After Other Cells

Deleting Cells

Doubly Linked Lists

Sorted Linked Lists

Linked-List Algorithms

Copying Lists

Sorting with Insertionsort

Linked List Selectionsort

Multithreaded Linked Lists

Linked Lists with Loops

Marking Cells

Using Hash Tables

List Retracing
List Reversal

Tortoise and Hare

Loops in Doubly Linked Lists

Summary
Exercises

Chapter & Arrays

Basic Concepts

One-dimensional Arrays

Finding ltems

Fnding Minimum, Maximum, and Average

Inserting ltems

Removing ltems

Nonzero Lower Bounds
Two Dimensi

Higher Dimensions

Triangular Arrays

Sparse Arrays

glele s klelelzlelelznlg Elelshblaxlsspkizlalsgle B2EgEG€ERGE SIS sE

Contents

Find a Row or Column 100
Get a Value 101
Set a Value 101
Delete a Value 104
Matrices 105
Summary 108
Exercises 108
Chapter 5 Stacks and Queues m
Stacks 11
Linked-List Stacks 112
Array Stacks 13
Double Stacks 115
Stack Algorithms 117
Queues 123
Linked-List Queues 123
Array Queues 124
Specialized Queues 127
Summary 128
Exercises 128
Chapter 6 Sorting 131
O(N?) Algorithms 132
Insertionsort in Arrays 132
Selectionsort in Arrays 134
Bubblesort 135
O(N log N) Algorithms 138
Heapsort 139
Quicksort 145
Mergesort 153
Sub O(N log N) Algorithms 156
Countingsort 156
Bucketsort 157
Summary 159
Exercises 160
Chapter 7 Searching 163
Linear Search 164
Binary Search 165
Interpolation Search 166
Summary 167
Exercises 168
Chapter 8 Hash Tables 169
Hash Table Fundamentals 120
Chaining 171

Contents

Open Addressing 172
Removing ltems 174
Liner Probing 174
Quadratic Probing 176
Pseudorandom Probing 178
Double Hashing 178
Ordered Hashing 179

Summary 181

Exercises 182

Chapter 9 Recursion 185

Basic Algorithms 186
Factorijal 186
Fibonacci Numbers 188
Tower of Hanoi 189

Graphical Algorithms 193
Koch Curves 193
Hilbert Curve 196
Sierpifiski Curve 197
Gaskets 200

Backtracking Algorithms an
Eight Queens Problem 203
Knight’s Tour 206

Select; 1P - 00
Selections with Loops 210
Selections with Duplicates 211
Selections Without Duplicates 213
Permutations with Duplicates 214
Permutations Without Duplicates 215

Recursion Removal 216
Tail Recursion Removal 216
Storing Intermediate Values 218
General Recursion Removal 220

Summary 222

Exercises 223

Chapter 10 Trees 227

Tree Terminology 227

Binary Tree Properties 21

Tree Representations 234
Building Trees in General 234
Building Complete Trees 236

Tree Traversal 237
Preorder Traversal 238
Inorder Traversal 240
Postorder Traversal 242

Contents

Depth-first Traversal 243
Traversal Run Times 244
Sorted Trees 245
Adding Nodes 245
Finding Nodes 247
Deleting Nodes 248
Threaded Trees 250
Building Threaded Trees 251
Using Threaded Trees 254
Specialized Tree Algorithms 256
The Animal Game 256
Expression Evaluation 258
Quadtrees 260
Tries 266
Summary 270
Exercises 271
Chapter 11 Balanced Trees 277
AV, Trees 278
Adding Values 278
Deleting Values 281
2-3 Trees 282
Adding Values 283
Deleting Values 284
B-Trees 287
Adding Values 288
Deleting Values 289
Balanced Tree Variations 291
Top-down B-trees 21
Bitrees 291
Summary 293
Exercises 293
Chapter 12 Decision Trees 297
Searching Game Trees 298
Minimax 298
Initial Moves and Responses 302
Game Tree Heuristics 303
Searching General Decision Trees 305
Optimization Problems 306
Exhaustive Search 307
Branch and Bound 309
Decision Tree Heuristics 310
Other Decision Tree Problems 316
Summary 322
Exercises 322

Xii

Contents

Chapter 13

Chapter 14

Chapter 15

Chapter 16

Basic Network Algorilhms
Network Terminology
Network Represcntations
Traversals
Depth-tirst Traversal
Breadth-frst Traversal
Connectivity lesting
Spanning Trees
Minimal Spanning Trees
Finding Paths
Finding Any Path
Label-Setting Shortest Paths
Label-Correcting Shorlest Paths
All-Pairs Shortest Paths
Summary
Exercises

More Network Algorithms

Topological Sorting

Cycle Detection

Map Coloring
Two-coloring

Three-coloring

Four-coloring

Five-coloring,

Other Map-coloring Algorithms
Maximal Flow

Work Assignment

Minimal Flow Cut
Summary
Exercises

String Algorithms
Matching Parentheses

Evaluating Arithmetic Expressions

Building Parse Trees
Pattern Matching
DFAs

Building DFAs for Regular Expressions

NFAs
String Searching
Calculating Edit Distance
Summary
Exercises

Cryptography
Terminology
Transposition Ciphers

325

362

363
367
368
370
372
37
375

377
378

380
381

383
386
387
39N
394
394

397
398
3%

Contents

Row/column Transposition 399
Column Transposition 401
Route Ciphers 403
Substitution Ciphers 404
Caesar Substitution 404
Vigenére Cipher 405
Simple Substitution 407
One-Time Pads 408
Block Ciphers 408
Substitution-Permutation Networks 409
Feistel Ciphers 410
Public-Key Encryption and RSA 412
Euler’s Totient Function 413
Multiplicative Inverses 413
An RSA Example 414
Practical Considerations 414
Other Uses for Cryptography 415
Summary 416
Exercises 417
Chapter 17 Complexity Theory 419
Notation 420
Complexity Classes 421
Reductions 424
3SAT 425
Bipartite Matching 426

- 426
Detection, Reporting, and Optimization Problems 427
Detection s Reporting 427
Reporting < Optimization 428
Reporting < Detection 8
Optimization S_Reporting 429
NP-Complete Problems 429
Summary 431
Exercises 432
Chapter 18 Distributed Algorithms 435
Types of Parallelism 436
Systolic Arrays 436
Distributed Computing 438
Multi-CPU Processing 440
Race Conditions 40
Deadlock 444
Quantum Computing 45
Distributed Algorithms 446
Debugging Distributed Algorithms 46
Embarrassingly Parallel Algorithms 47
Mergesort 449

xiv

Contents

Dining Philosophers 449

The Two Generals Problem 452

Byzantine Generals 453

Consensus 455

Leader Election 458

Snapshot 459

Clock Synchronization 460

Summary 462

Exercises 46

Chapter 19 _Interview Puzzles 465
Asking Interview Puzzle Questions 467

Answering Interview Puzzle Questions 468

Summary 472

Exercises 474

Appendix A Summary of Algorithmic Concepts 417
Appendix B Solutions to Exercises 487
Glossary 559
[ndex 573

Introduction

Algorithms are the recipes that make efficient programming possible.
They explain how to sort records, search for items, calculate numeric
values such as prime factors, find the shortest path between two points in a
street network, and determine the maximum flow of information possible
through a communications network. The difference between using a good
algorithm and a bad one can mean the difference between solving a
problem in seconds, hours, or never.

Studying algorithms lets you build a useful toolkit of methods for solving
specific problems. It lets you understand which algorithms are most
effective under different circumstances so that you can pick the one best
suited for a particular program. An algorithm that provides excellent
performance with one set of data may perform terribly with other data, so
it is important that you know how to pick the algorithm that is the best
match for your scenario.

Even more important, by studying algorithms you can learn general
problem-solving techniques that you can apply to other problems even if
none of the algorithms you already know is a perfect fit for your current
situation. These techniques let you look at new problems in different ways
so that you can create and analyze your own algorithms to solve your
problems and meet unanticipated needs.

In addition to helping you solve problems while on the job, these
techniques may even help you land the job where you can use them! Many
large technology companies, such as Microsoft, Google, Yahoo!, IBM,
and others, want their programmers to understand algorithms and the
related problem-solving techniques. Some of these companies are
notorious for making job applicants work through algorithmic
programming and logic puzzles during interviews.

The better interviewers don't necessarily expect you to solve every puzzle.
In fact, they will probably learn more when you don't solve a puzzle.
Rather than wanting to know the answer, the best interviewers want to see
how you approach an unfamiliar problem. They want to see whether you
throw up your hands and say the problem is unreasonable in a job
interview. Or perhaps you analyze the problem and come up with a
promising line of reasoning for using algorithmic approaches to attack the

748

problem. “Gosh, I don't know. Maybe I'd search the Internet,” would be a
bad answer. “It seems like a recursive divide-and-conquer approach might
work” would be a much better answer.

This book is an easy-to-read introduction to computer algorithms. It
describes a number of important classical algorithms and tells when each
is appropriate. It explains how to analyze algorithms to understand their
behavior. Most importantly, it teaches techniques that you can use to
create new algorithms on your own.

Here are some of the useful algorithms this book describes:

* Numerical algorithms such as randomization, factoring, working
with prime numbers, and numeric integration

* Methods for manipulating common data structures such as arrays,
linked lists, trees, and networks

» Using more-advanced data structures such as heaps, trees, balanced
trees, and B-trees

+ Sorting and searching

* Network algorithms such as shortest path, spanning tree,
topological sorting, and flow calculations

Here are some of the general problem-solving techniques this book
explains:

* Brute-force or exhaustive search

+ Divide and conquer

+ Backtracking

* Recursion

* Branch and bound

* Greedy algorithms and hill climbing
+ Least-cost algorithms

+ Constricting bounds

* Heuristics

To help you master the algorithms, this book provides exercises that you
can use to explore ways you can modify the algorithms to apply them to
new situations. This also helps solidify the main techniques demonstrated
by the algorithms.

Finally, this book includes some tips for approaching algorithmic
questions that you might encounter in a job interview. Algorithmic

749

techniques let you solve many interview puzzles. Even if you can't use
algorithmic techniques to solve every puzzle, you will at least demonstrate
that you are familiar with approaches that you can use to solve other
problems.

Algorithm Selection

Each of the algorithms in this book was included for one or more of the
following reasons:

* The algorithm is useful, and a seasoned programmer should be
expected to understand how it works and use it in programs.

* The algorithm demonstrates important algorithmic programming
techniques you can apply to other problems.

* The algorithm is commonly studied by computer science students,
so the algorithm or the techniques it uses could appear in a
technical interview.

After reading this book and working through the exercises, you will have
a good foundation in algorithms and techniques you can use to solve your
own programming problems.

Who This Book Is For

This book is intended primarily for three kinds of readers: professional
programmers, programmers preparing for job interviews, and
programming students.

Professional programmers will find the algorithms and techniques
described in this book useful for solving problems they face on the job.
Even when you encounter a problem that isn't directly addressed by an
algorithm in this book, reading about these algorithms will give you new
perspectives from which to view problems so that you can find new
solutions.

750

Programmers preparing for job interviews can use this book to hone their
algorithmic skills. Your interviews may not include any of the problems
described in this book, but they may contain questions that are similar
enough that you can use the techniques you learned in this book to solve
them.

Programming students should be required to study algorithms. Many of
the approaches described in this book are simple, elegant, and powerful,
but they're not all obvious, so you won't necessarily stumble across them
on your own. Techniques such as recursion, divide and conquer, branch
and bound, and using well-known data structures are essential to anyone
who has an interest in programming.

Note

Personally, I think algorithms are just plain fun! They're my equivalent of crossword
puzzles or Sudoku. I love the feeling of putting together a complicated algorithm,
dumping some data into it, and seeing a beautiful three-dimensional image, a curve
matching a set of points, or some other elegant result appear!

Getting the Most Out of This
Book

You can learn some new algorithms and techniques just by reading this
book, but to really master the methods demonstrated by the algorithms,
you need to work with them. You need to implement them in some
programming language. You also need to experiment, modify the
algorithms, and try new variations on old problems. The book's exercises
and interview questions can give you ideas for new ways to use the
techniques demonstrated by the algorithms.

To get the greatest benefit from the book, I highly recommend that you
implement as many of the algorithms as possible in your favorite
programming language or even in more than one language to see how
different languages affect implementation issues. You should study the
exercises and at least write down outlines for solving them. Ideally you
should implement them, too. Often there's a reason why an exercise is

751

included, and you may not discover it until you take a hard look at the
problem.

Finally, look over some of the interview questions available on the
Internet, and figure out how you would approach them. In many
interviews you won't be required to implement a solution, but you should
be able to sketch out solutions. And if you have time to implement
solutions, you will learn even more.

Understanding algorithms is a hands-on activity. Don't be afraid to put
down the book, break out a compiler, and write some actual code!

This Book's Websites

Actually, this book has two websites: Wiley's version and my version.
Both sites contain the book's source code.

The Wiley web page for this book is http://www.wiley.com/
go/essentialalgorithms . You also can go to
http://www.wiley.com and search for the book by title or ISBN.
Once you've found the book, click the Downloads tab to obtain all the
source code for the book. Once you download the code, just decompress it
with your favorite compression tool.

Note

At the Wiley web site, you may find it easiest to search by ISBN. This book's ISBN is
978-1-118-61210-1.

To find my web page for this book, go to
http://www.CSharpHelper.com/algorithms.html

752

http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com
http://www.CSharpHelper.com/algorithms.html

How This Book Is
Structured

This section describes the book's contents in detail.

Chapter 1, “Algorithm Basics,” explains concepts you must understand
to analyze algorithms. It discusses the difference between algorithms and
data structures, introduces Big O notation, and describes times when
practical considerations are more important than theoretical runtime
calculations.

Chapter 2, “Numerical Algorithms,” explains several algorithms that
work with numbers. These algorithms randomize numbers and arrays,
calculate greatest common divisor and least common multiple, perform
fast exponentiation, and determine whether a number is prime. Some of
the algorithms also introduce the important techniques of adaptive
quadrature and Monte Carlo simulation.

Chapter 3, “Linked Lists,” explains linked-list data structures. These
flexible structures can be used to store lists that may grow over time. The
basic concepts are also important for building other linked data structures,
such as trees and networks.

Chapter 4, “Arrays,” explains specialized array algorithms and data
structures, such as triangular arrays and sparse arrays, that can save a
program time and memory.

Chapter 5, “Stacks and Queues,” explains algorithms and data
structures that let a program store and retrieve items in first-in-first-out
(FIFO) or last-in-first-out (LIFO) order. These data structures are useful in
other algorithms and can be used to model real-world scenarios such as
checkout lines at a store.

Chapter 6, “Sorting,” explains sorting algorithms that demonstrate a
wide variety of useful algorithmic techniques. Different sorting algorithms
work best for different kinds of data and have different theoretical run
times, so it's good to understand an assortment of these algorithms. These
are also some of the few algorithms for which exact theoretical

753

performance bounds are known, so they are particularly interesting to
study.

Chapter 7, “Searching,” explains algorithms that a program can use to
search sorted lists. These algorithms demonstrate important techniques
such as binary subdivision and interpolation.

Chapter 8, “Hash Tables,” explains hash tables—data structures that use
extra memory to allow a program to locate specific items quickly. They
powerfully demonstrate the space-time trade-off that is so important in
many programs.

Chapter 9, “Recursion,” explains recursive algorithms—those that call
themselves. Recursive techniques make some algorithms much easier to
understand and implement, although they also sometimes lead to
problems, so this chapter also describes how to remove recursion from an
algorithm when necessary.

Chapter 10, “Trees,” explains highly recursive tree data structures,
which are useful for storing, manipulating, and studying hierarchical data
and have applications in unexpected places, such as evaluating arithmetic
expressions.

Chapter 11, “Balanced Trees,” explains trees that remain balanced as
they grow over time. In general, tree structures can grow very tall and
thin, and that can ruin the performance of tree algorithms. Balanced trees
solve this problem by ensuring that a tree doesn't grow too tall and skinny.

Chapter 12, “Decision Trees,” explains algorithms that attempt to solve
problems that can be modeled as a series of decisions. These algorithms
are often used on very hard problems, so they often find only approximate
solutions rather than the best solution possible. However, they are very
flexible and can be applied to a wide range of problems.

Chapter 13, “Basic Network Algorithms,” explains fundamental
network algorithms such as visiting all the nodes in a network, detecting
cycles, creating spanning trees, and finding paths through a network.

Chapter 14, “More Network Algorithms,” explains more network
algorithms, such as topological sorting to arrange dependent tasks, graph
coloring, network cloning, and assigning work to employees.

754

Chapter 15, “String Algorithms,” explains algorithms that manipulate
strings. Some of these algorithms, such as searching for substrings, are
built into tools that most programming languages can use without
customized programming. Others, such as parenthesis matching and
finding string differences, require some extra work and demonstrate useful
techniques.

Chapter 16, “Cryptography,” explains how to encrypt and decrypt
information. It covers the basics of encryption and describes several
interesting encryption techniques, such as Vigenére ciphers, block ciphers,
and public key encryption. This chapter does not go into all the details of
specific encryption algorithms such as DES (Data Encryption Standard)
and AES (Advanced Encryption Standard), because they are more
appropriate for a book on encryption.

Chapter 17, “Complexity Theory,” explains two of the most important
classes of problems in computer science: P (problems that can be solved in
deterministic polynomial time) and NP (problems that can be solved in
nondeterministic polynomial time). This chapter describes these classes,
ways to prove that a problem is in one or the other, and the most profound
question in computer science: Is P equal to NP?

Chapter 18, “Distributed Algorithms,” explains algorithms that run on
multiple processors. Almost all modern computers contain multiple
processors, and computers in the future will contain even more, so these
algorithms are essential for getting the most out of a computer's latent
power.

Chapter 19, “Interview Puzzles,” describes tips and techniques you can
use to attack puzzles and challenges that you may encounter during a
programming interview. It also includes a list of some websites that
contain large lists of puzzles that you can use for practice.

Appendix A, “Summary of Algorithmic Concepts,” summarizes the
ideas and strategies used by the algorithms described in this book. Using
these, you can build solutions to other problems that are not specifically
covered by the algorithms described here.

Appendix B, “Solutions to Exercises,” contains the solutions to the
exercises at the end of each chapter.

755

The Glossary defines important algorithmic concepts that are used in this
book. You may want to review the Glossary before going on programming
interviews.

What You Need to Use This
Book

To read this book and understand the algorithms, you don't need any
special equipment. If you really want to master the material, however, you
should implement as many algorithms as possible in an actual
programming language. It doesn't matter which language. Working
through the details of implementing the algorithms in any language will
help you better understand the algorithms' details and any special
treatment required by the language.

Of course, if you plan to implement the algorithms in a programming
language, you need a computer and whatever development environment is
appropriate.

The book's websites contain sample implementations written in C# with
Visual Studio 2012 that you can download and examine. If you want to
run those, you need to install C# 2012 on a computer that can run Visual
Studio reasonably well.

Running any version of Visual Studio requires that you have a reasonably
fast, modern computer with a large hard disk and lots of memory. For
example, I'm fairly happy running my Intel Core 2 system at 1.83 GHz
with 2 GB of memory and a spacious 500 GB hard drive. That's a lot more
disk space than I need, but disk space is relatively cheap, so why not buy a
lot?

You can run Visual Studio on much less powerful systems, but using an
underpowered computer can be extremely slow and frustrating. Visual
Studio has a big memory footprint, so if you're having performance
problems, installing more memory may help.

756

The programs will load and execute with C# Express Edition, so there's no
need to install a more expensive version of C#. You can get more
information on C# Express Edition and download it at
http://www.microsoft.com/visualstudio/eng/
downloads#d-express-windows-desktop

Conventions

To help you get the most from the text and keep track of what's
happening, I've used several conventions throughout the book.

Splendid Sidebars

Sidebars such as this one contain additional information and side topics.

Warning

Warning boxes like this hold important, not-to-be forgotten information that is directly
relevant to the surrounding text.

Note

Boxes like this hold notes, tips, hints, tricks, and asides to the current discussion.

As for styles in the text:

* New terms and important words are italicized when they are
introduced. You also can find many of them in the Glossary.

* Keyboard strokes look like this: Ctrl+A. This one means to hold
down the Ctrl key and then press the A key.

e URLs, code, and email addresses within the text are shown in
monofont type, as in http://www.CSharpHelper.com
= 10, and RodStephens@CSharpHelper.com

, X

We present code in one of two ways:

I use a monofont type with no highlighting for most
code examples.

| use bold text to enphasize code that's particularly

757

http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
http://www.microsoft.com/visualstudio/eng/downloads#d-express-windows-desktop
http://www.CSharpHelper.com
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

i mport ant
in the present context.

Email Me

If you have questions, comments, or suggestions, please feel free to email
me at RodStephens@CSharpHelper.com . I can't promise to
solve all your algorithmic problems, but I do promise to try to point you in
the right direction.

758

d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

Chapter 1
Algorithm Basics

Before you jump into the study of algorithms, you need a little
background. To begin with, you need to know that, simply stated, an
algorithm is a recipe for getting something done. It defines the steps for
performing a task in a certain way.

That definition seems simple enough, but no one writes algorithms for
performing extremely simple tasks. No one writes instructions for how to
access the fourth element in an array. It is just assumed that this is part of
the definition of an array and that you know how to do it (if you know
how to use the programming language in question).

Normally people write algorithms only for difficult tasks. Algorithms
explain how to find the solution to a complicated algebra problem, how to
find the shortest path through a network containing thousands of streets, or
how to find the best mix of hundreds of investments to optimize profits.

This chapter explains some of the basic algorithmic concepts you should
understand if you want to get the most out of your study of algorithms.

It may be tempting to skip this chapter and jump to studying specific
algorithms, but you should at least skim this material. Pay close attention
to the section “Big O Notation,” because a good understanding of runtime
performance can mean the difference between an algorithm performing its
task in seconds, hours, or not at all.

Approach

To get the most out of an algorithm, you must be able to do more than
simply follow its steps. You need to understand the following:

* The algorithm's behavior. Does it find the best possible solution,
or does it just find a good solution? Could there be multiple best
solutions? Is there a reason to pick one “best” solution over the
others?

10

* The algorithm's speed. Is it fast? Slow? Is it usually fast but
sometimes slow for certain inputs?

* The algorithm's memory requirements. How much memory will
the algorithm need? Is this a reasonable amount? Does the
algorithm require billions of terabytes more memory than a
computer could possibly have (at least today)?

* The main techniques the algorithm uses. Can you reuse those
techniques to solve similar problems?

This book covers all these topics. It does not, however, attempt to cover
every detail of every algorithm with mathematical precision. It uses an
intuitive approach to explain algorithms and their performance, but it does
not analyze performance in rigorous detail. Although that kind of proof
can be interesting, it can also be confusing and take up a lot of space,
providing a level of detail that is unnecessary for most programmers. This
book, after all, is intended primarily for programming professionals who
need to get a job done.

This book's chapters group algorithms that have related themes.
Sometimes the theme is the task they perform (sorting, searching, network
algorithms), sometimes it's the data structures they use (linked lists,
arrays, hash tables, trees), and sometimes it's the techniques they use
(recursion, decision trees, distributed algorithms). At a high level, these
groupings may seem arbitrary, but when you read about the algorithms,
you'll see that they fit together.

In addition to those categories, many algorithms have underlying themes
that cross chapter boundaries. For example, tree algorithms (Chapters 10,
11, and 12) tend to be highly recursive (Chapter 9). Linked lists (Chapter
3) can be used to build arrays (Chapter 4), hash tables (Chapter 8), stacks
(Chapter 5), and queues (Chapter 5). The ideas of references and pointers
are used to build linked lists (Chapter 3), trees (Chapters 10, 11, and 12),
and networks (Chapters 13 and 14). As you read, watch for these common
threads. Appendix A summarizes common strategies programs use to
make these ideas easier to follow.

11

Algorithms and Data
Structures

An algorithm is a recipe for performing a certain task. A data structure is
a way of arranging data to make solving a particular problem easier. A
data structure could be a way of arranging values in an array, a linked list
that connects items in a certain pattern, a tree, a graph, a network, or
something even more exotic.

Often algorithms are closely tied to data structures. For example, the edit
distance algorithm described in Chapter 15 uses a network to determine
how similar two strings are. The algorithm is tied closely to the network
and won't work without it.

Often an algorithm says, “Build a certain data structure and then use it in a
certain way.” The algorithm can't exist without the data structure, and
there's no point in building the data structure if you don't plan to use it
with the algorithm.

Pseudocode

To make the algorithms described in this book as useful as possible, they
are first described in intuitive English terms. From this high-level
explanation, you should be able to implement the algorithm in most
programming languages.

Often, however, an algorithm's implementation contains niggling little
details that can make implementation hard. To make handling those
details easier, the algorithms are also described in pseudocode.
Pseudocode is text that is a lot like a programming language but that is not
really a programming language. The idea is to give you the structure and
details you would need to implement the algorithm in code without tying
the algorithm to a particular programming language. Hopefully you can
translate the pseudocode into actual code to run on your computer.

12

The following snippet shows an example of pseudocode for an algorithm
that calculates the greatest common divisor (GCD) of two integers:

// Find the greatest common divisor of a and b.

// GCD(a, b) = GCD(b, a Mod b).
Integer: Gcd(Integer: a, Integer: b)
While (b != 0)

// Calculate the remainder.
Integer: remainder = a Mod b
// Calculate GCD(b, remainder).

a=>
b = remainder
End While
// GCD(a, 0) is a.
Return a
End Gcd
The Mod Operator

The modulus operator, which is written Mod in the pseudocode, means the
remainder after division. For example, 13 Mod 4 is 1 because 13 divided by 4 is 3
with a remainder of 1.

The equation 13 Mod 4 is usually pronounced “13 mod 4” or “13 modulo 4.”

The pseudocode starts with a comment. Comments begin with the
characters // and extend to the end of the line.

The first actual line of code is the algorithm's declaration. This algorithm
is called Ged and returns an integer result. It takes two parameters named
a and b, both of which are integers.

Note

Chunks of code that perform a task, optionally returning a result, are variously called
routines, subroutines, methods, procedures, subprocedures, or functions.

The code after the declaration is indented to show that it is part of the
method. The first line in the method's body begins a While loop. The
code indented below the While statement is executed as long as the
condition in the While statement remains true.

The While loop ends with an End While statement. This statement
isn't strictly necessary, because the indentation shows where the loop ends,
but it provides a reminder of what kind of block of statements is ending.

13

The method exits at the Return statement. This algorithm returns a
value, so this Return statement indicates which value the algorithm
should return. If the algorithm doesn't return any value, such as if its
purpose is to arrange values or build a data structure, the Return
statement isn't followed by a return value.

The code in this example is fairly close to actual programming code.
Other examples may contain instructions or values described in English.
In those cases, the instructions are enclosed in angle brackets (<>) to
indicate that you need to translate the English instructions into program
code.

Normally when a parameter or variable is declared (in the Ged algorithm,
this includes the parameters a and b and the variable remainder), its
data type is given before it, followed by a colon, as in Integer:
remainder . The data type may be omitted for simple integer looping
variables,asin For i = 1 To 10 .

One other feature that is different from some programming languages is
that a pseudocode For loop may include a Step statement indicating the
value by which the looping variable is changed each trip through the loop.
A For loop ends with a Next i statement (where i is the looping
variable) to remind you which loop is ending.

For example, consider the following pseudocode:

For 1 = 100 To 0 Step -5
// Do something...
Next i

This code is equivalent to the following C# code:

for (int i = 100; i >= 0; 1 -= 5)
{
// Do something...

}

The pseudocode used in this book uses If-Then-Else statements,
Case statements, and other statements as needed. These should be
familiar to you from your knowledge of real programming languages.
Anything else that the code needs is spelled out in English.

14

One basic data structure that may be unfamiliar to you depending on
which programming languages you know is a List. A List is similar
to a self-expanding array. It provides an Add method that lets you add an
item to the end of the list. For example, the following pseudocode creates
aList Of Integer thatcontains the numbers I through 10:

List Of Integer: numbers

For 1 = 1 To 10
numbers.Add (i)

Next i

After a list is initialized, the pseudocode can use it as if it were a normal
array and access items anywhere in the list. Unlike arrays, lists also let
you add and remove items from any position.

Many algorithms in this book are written as methods or functions that
return a result. The method's declaration begins with the result's data type.
If a method performs some task and doesn't return a result, it has no data

type.
The following pseudocode contains two methods:

// Return twice the input value.
Integer: DoubleIt (Integer: value)
Return 2 * value
End DoubleIt
// The following method does something and doesn't
return a value.
DoSomething (Integer: values|[])
// Some code here.

End DoSomething

The DoubleIt method takes an integer as a parameter and returns an
integer. The code doubles the input value and returns the result.

The DoSomething method takes as a parameter an array of integers
named values. It performs a task and doesn't return a result. For example,
it might randomize or sort the items in the array. (Note that this book
assumes that arrays start with the index 0. For example, an array
containing three items has indices 0, 1, and 2.)

Pseudocode should be intuitive and easy to understand, but if you find
something that doesn't make sense to you, feel free to post a question on

15

the book's discussion forum at www.wiley.com/ go/
essentialalgorithms or e-mail me at
RodStephens@CSharpHelper.com . I'll point you in the right
direction.

One problem with pseudocode is that it has no compiler to detect errors.
As a check of the basic algorithm, and to give you some actual code to use
for a reference, C# implementations of most of the algorithms and many
of the exercises are available for download on the book's website.

Algorithm Features

A good algorithm must have three features: correctness, maintainability,
and efficiency.

Obviously if an algorithm doesn't solve the problem for which it was
designed, it's not much use. If it doesn't produce correct answers, there's
little point in using it.

Note

Interestingly, some algorithms produce correct answers only some of the time but are still
useful. For example, an algorithm may be able to give you some information with a
certain probability. In that case you may be able to rerun the algorithm many times to
increase your confidence that the answer is correct. Fermat's primality test, described in
Chapter 2, is this kind of algorithm.

If an algorithm isn't maintainable, it's dangerous to use in a program. If an
algorithm is simple, intuitive, and elegant, you can be confident that it is
producing correct results, and you can fix it if it doesn't. If the algorithm is
intricate, confusing, and convoluted, you may have a lot of trouble
implementing it, and you will have even more trouble fixing it if a bug
arises. If it's hard to understand, how can you know if it is producing
correct results?

Note

This doesn't mean it isn't worth studying confusing and difficult algorithms. Even if you
have trouble implementing an algorithm, you may learn a lot in the attempt. Over time
your algorithmic intuition and skill will increase, so algorithms you once thought were
confusing will seem easier to handle. You must always test all algorithms thoroughly,
however, to make sure they are producing correct results.

16

http://www.wiley.com/go/essentialalgorithms
http://www.wiley.com/go/essentialalgorithms
d:\control\pi\scripts\working\tmp\1118612760.epub\oebps\mailto:RodStephens@CSharpHelper.com

Most developers spend a lot of effort on efficiency, and efficiency is
certainly important. If an algorithm produces a correct result and is simple
to implement and debug, it's still not much use if it takes seven years to
finish or if it requires more memory than a computer can possibly hold.

In order to study an algorithm's performance, computer scientists ask how
its performance changes as the size of the problem changes. If you double
the number of values the algorithm is processing, does the runtime
double? Does it increase by a factor of 4? Does it increase exponentially
so that it suddenly takes years to finish?

You can ask the same questions about memory usage or any other
resource that the algorithm requires. If you double the size of the problem,
does the amount of memory required double?

You can also ask the same questions with respect to the algorithm's
performance under different circumstances. What is the algorithm's
worst-case performance? How likely is the worst case to occur? If you run
the algorithm on a large set of random data, what is its average-case
performance?

To get a feeling for how problem size relates to performance, computer
scientists use Big O notation, described in the following section.

Big O Notation

Big O notation uses a function to describe how the algorithm's worst-case
performance relates to the problem size as the size grows very large. (This
is sometimes called the program's asymptotic performance.) The function
is written within parentheses after a capital letter O.

For example, O(N?) means an algorithm's runtime (or memory usage or
whatever you're measuring) increases as the square of the number of
inputs N. If you double the number of inputs, the runtime increases by
roughly a factor of 4. Similarly, if you triple the number of inputs, the
runtime increases by a factor of 9.

Note

17

Often O(N2) is pronounced “order N squared.” For example, you might say, “The
quicksort algorithm described in Chapter 6 has a worst-case performance of order N
squared.”

There are five basic rules for calculating an algorithm's Big O notation:

1. If an algorithm performs a certain sequence of steps f(N) times
for a mathematical function f, it takes O(f(N)) steps.

2. If an algorithm performs an operation that takes O(f(N)) steps
and then performs a second operation that takes O(g(N)) steps for
functions f and g, the algorithm's total performance is O(f(N) +
g(N)).

3. If an algorithm takes O(f(N) + g(N)) and the function f(N) is
greater than g(N) for large N, the algorithm's performance can be
simplified to O(f(N)).

4. If an algorithm performs an operation that takes O(f(N)) steps,
and for every step in that operation it performs another O(g(N))
steps, the algorithm's total performance is O(f(N) x g(N)).

5. Ignore constant multiples. If C is a constant, O(C x f(N)) is the
same as O(f(N)), and O(f(C x N)) is the same as O(f(N)).

These rules may seem a bit formal, with all the f(N) and g(N), but they're
fairly easy to apply. If they seem confusing, a few examples should make
them easier to understand.

Rule 1

If an algorithm performs a certain sequence of steps f(N) times for a
mathematical function f, it takes O(f(N)) steps.

Consider the following algorithm, written in pseudocode, for finding the
largest integer in an array:

Integer: FindLargest (Integer: arrayl(]

Integer: largest = array[0]

For i = 1 To <largest index>

If (arrayl[il] > largest) Then largest =

array([i]

Next i

Return largest
End FindLargest

18

The FindLargest algorithm takes as a parameter an array of integers
and returns an integer result. It starts by setting the variable largest
equal to the first value in the array.

It then loops through the remaining values in the array, comparing each to
largest. If it finds a value that is larger than largest , the program
sets Largest equal to that value.

After it finishes the loop, the algorithm returns largest .

This algorithm examines each of the N items in the array once, so it has
O(N) performance.

Note

Often algorithms spend most of their time in loops. There's no way an algorithm can
execute more than N steps with a fixed number of code lines unless it contains some sort
of loop.

Study an algorithm's loops to figure out how much time it takes.

Rule 2

If an algorithm performs an operation that takes O(f(N)) steps and then
performs a second operation that takes O(g(N)) steps for functions f and
0, the algorithm's total performanceis O(f(N) + g(N)).

If you look again at the FindLargest algorithm shown in the
preceding section, you'll see that a few steps are not actually inside the
loop. The following pseudocode shows the same steps, with their runtime
order shown to the right in comments:

Integer: FindLargest (Integer: arrayl]

Integer: largest =
array[0] // 0(1)
For i = 1 To <largest

index> // O(N)

If (arrayli] > largest) Then largest =
arrayl[i]

Next i
Return

largest //
O(1)

End FindLargest

19

This algorithm performs one setup step before it enters its loop and then
performs one more step after it finishes the loop. Both of those steps have
performance O(1) (they're each just a single step), so the total runtime for
the algorithm is really O(1 + N + 1). You can use normal algebra to
combine terms to rewrite this as O(2 + N).

Rule3

If an algorithm takes O(f(N) + g(N)) and the function f(N) is greater than
g(N) for large N, the algorithm's performance can be simplified to
O(f(N)).

The preceding example showed that the FindLargest algorithm has
runtime O(2 + N). When N grows large, the function N is larger than the
constant value 2, so O(2 + N) simplifies to O(N).

Ignoring the smaller function lets you focus on the algorithm's asymptotic
behavior as the problem size becomes very large. It also lets you ignore
relatively small setup and cleanup tasks. If an algorithm spends some time
building simple data structures and otherwise getting ready to perform a
big computation, you can ignore the setup time as long as it's small
compared to the length of the main calculation.

Rule4

If an algorithm performs an operation that takes O(f(N)) steps, and for
every step in that operation it performs another O(g(N)) steps, the
algorithm's total performance is O(f(N) + g(N)).

Consider the following algorithm that determines whether an array
contains any duplicate items. (Note that this isn't the most efficient way to
detect duplicates.)

Boolean: ContainsDuplicates (Integer: arrayl[])
// Loop over all of the array's items.
For 1 = 0 To <largest index>

For j = 0 To <largest index>
// See if these two items are duplicates.
If (1 !'= j) Then
If (arrayl[i] == array[j]) Then

Return True

20

End If
Next j
Next i
// If we get to this point, there are no
duplicates.
Return False
End ContainsDuplicates

This algorithm contains two nested loops. The outer loop iterates over all
the array's N items, so it takes O(N) steps.

For each trip through the outer loop, the inner loop also iterates over the N
items in the array, so it also takes O(N) steps.

Because one loop is nested inside the other, the combined performance is
O(N x N) = O(N?).

Rule5

Ignore constant multiples. If C is a constant, O(C x f(N)) is the same as
O(f(N)), and O(f(C x N)) is the same as O(f(N)).

If you look again at the ContainsDuplicates algorithm shown in
the preceding section, you'll see that the inner loop actually performs one
or two steps. It performs an If test to see if the indices i and j are the
same. If they are different, it compares array([i] and array[j] . It
may also return the value True.

If you ignore the extra step for the Return statement (it happens at most
only once), and you assume that the algorithm performs both the If
statements (as it does most of the time), the inner loop takes O(2 x N)
steps. Therefore, the algorithm's total performance is O(N x 2 x N) = O(2
x N?).

Rule 5 lets you ignore the factor of 2, so the runtime is O(N?).

This rule really goes back to the purpose of Big O notation. The idea is to
get a feeling for the algorithm's behavior as N increases. In this case,
suppose you increase N by a factor of 2.

If you plug the value 2 x N into the equation 2 x N2, you get the
following:

21

This is 4 times the original value 2 x N2, so the runtime has increased by a
factor of 4.

Now try the same thing with the runtime simplified by Rule 5 to O(N?).
Plugging 2 % N into this equation gives the following:

This is 4 times the original value N, so the runtime has increased by a
factor of 4.

Whether you use the formula 2 x N? or just N2, the result is the same:
Increasing the size of the problem by a factor of 2 increases the runtime by
a factor of 4. The important thing here isn't the constant; it's the fact that
the runtime increases as the square of the number of inputs N.

Note

It's important to remember that Big O notation is just intended to give you an idea of an
algorithm's theoretical behavior. Your results in practice may be different. For example,
suppose an algorithm's performance is O(N), but if you don't ignore the constants, the
actual number of steps executed is something like 100,000,000 + N. Unless N is really
big, you may not be able to safely ignore the constant.

Common Runtime Functions

When you study the runtime of algorithms, some functions occur
frequently. The following sections give some examples of a few of the
most common functions. They also give you some perspective so that

you'll know, for example, whether an algorithm with O(N*) performance
is reasonable.

1

An algorithm with O(1) performance takes a constant amount of time no
matter how big the problem is. These sorts of algorithms tend to perform

22

relatively trivial tasks because they cannot even look at all the inputs in
O(1) time.

For example, at one point the quicksort algorithm needs to pick a number
that is in an array of values. Ideally, that number should be somewhere in
the middle of all the values in the array, but there's no easy way to tell
which number might fall nicely in the middle. (For example, if the
numbers are evenly distributed between 1 and 100, 50 would make a good
dividing number.) The following algorithm shows one common approach
for solving this problem:

Integer: DividingPoint (Integer: arrayl[])

Integer: numberl = array[0]
Integer: number?2 = array[<last index of array>]
Integer: number3 = array[<last index of array> /

2]
If (<numberl 1is between number2 and number3>)
Return numberl
If (<number2 is between numberl and number3>)
Return number?2
Return number3
End MiddleValue

This algorithm picks the values at the beginning, end, and middle of the
array, compares them, and returns whichever item lies between the other
two. This may not be the best item to pick out of the whole array, but
there's a decent chance that it's not too terrible a choice.

Because this algorithm performs only a few fixed steps, it has O(1)
performance and its runtime is independent of the number of inputs N. (Of
course, this algorithm doesn't really stand alone. It's just a small part of a
more complicated algorithm.)

Log N

An algorithm with O(log N) performance typically divides the number of
items it must consider by a fixed fraction at every step.

For example, Figure 1.1 shows a sorted complete binary tree. It's a binary
tree because every node has at most two branches. It's a complete tree
because every level (except possibly the last) is completely full and all the
nodes in the last level are grouped on the left side. It's a sorted tree

23

because every node's value lies between the values of its left and right
child nodes.

Logarithms

The logarithm of a number in a certain log base is the power to which the base
must be raised to get a certain result. For example, log2(8) is 3 because 2=3.
Here, 2 is the log base.

Often in algorithms the base is 2 because the inputs are being divided into two

groups repeatedly. As you'll see shortly, the log base isn't really important in Big
O notation, so it is usually omitted.

Figure 1.1 Searching a full binary tree takes O(log N) steps.

The following pseudocode shows one way you might search the tree
shown in Figure 1.1 to find a particular item.

24

Node: FindItem(Integer: target value)
Node: test node = <root of tree>
Do Forever
// If we fell off the tree. The value isn't

present.
If (test node == null) Return null
If (target value == test node.Value) Then

// test node holds the target value. This
is the node we want.
Return test node
Else If (target value < test node.Value) Then
// Move to the left child.
test node = test node.LeftChild
Else
// Move to the right child.
test node = test node.RightChild
End If
End Do
End FindItem

Chapter 10 covers tree algorithms in detail, but you should be able to get
the gist of the algorithm from the following discussion.

The algorithm declares and initializes the variable test node so that it
points to the root at the top of the tree. (Traditionally, trees in computer
programs are drawn with the root at the top, unlike real trees.) It then
enters an infinite loop.

If test node is null, the target value isn't in the tree, so the
algorithm returns null.

Note

null is a special value that you can assign to a variable that should normally point to an
object such as a node in a tree. The value null means “This variable doesn't point to
anything.”

If test node holds the target value, test node is the node we're
seeking, so the algorithm returns it.

If target value , the value we're searching for, is less than the value
in test node, the algorithm sets test node equal to its left child.
(If test_node is at the bottom of the tree, its LeftChild value is
null, and the algorithm handles the situation the next time it goes
through the loop.)

25

If test node 's value does not equal target value and is not less
than target value , it must be greater than target value . In
that case, the algorithm sets test node equal to its right child. (Again,
if test node is at the bottom of the tree, its RightChild is null,
and the algorithm handles the situation the next time it goes through the
loop.)

The variable test node moves down through the tree and eventually
either finds the target value or falls off the tree when test node is
null.

Understanding this algorithm's performance becomes a question of how
far down the tree test node must move before it finds
target value or falls off the tree.

Sometimes the algorithm gets lucky and finds the target value right away.
If the target value is 7 in Figure 1.1, the algorithm finds it in one step and
stops. Even if the target value isn't at the root node—for example, if it's
4—the program might have to check only a bit of the tree before stopping.

In the worst case, however, the algorithm needs to search the tree from top
to bottom.

In fact, roughly half the tree's nodes are the nodes at the bottom that have
missing children. If the tree were a full complete tree, with every node
having exactly zero or two children, the bottom level would hold exactly
half the tree's nodes. That means if you search for randomly chosen values
in the tree, the algorithm will have to travel through most of the tree's
height most of the time.

Now the question is, “How tall is the tree?” A full complete binary tree of
height H has 2" nodes. To look at it from the other direction, a full
complete binary tree that contains N nodes has height logx(N). Because
the algorithm searches the tree from top to bottom in the worst (and
average) case, and because the tree has a height of roughly log>(N), the
algorithm runs in O(logz(N)) time.

At this point a curious feature of logarithms comes into play. You can
convert a logarithm from base A to base B using this formula:

26

Setting B = 2, you can use this formula to convert the value O(log>(N) into
any other log base A:

The value 1 / loga(2) is a constant for any given A, and Big O notation
ignores constant multiples, so that means O(log(N)) is the same as
O(loga(N)) for any log base A. For that reason, this runtime is often
written O(log N) with no indication of the base (and no parentheses to
make it look less cluttered).

This algorithm is typical of many algorithms that have O(log N)
performance. At each step, it divides roughly in half the number of items
it must consider.

Because the log base doesn't matter in Big O notation, it doesn't matter
which fraction the algorithm uses to divide the items it is considering.
This example divides the number of items in half at each step, which is
common for many logarithmic algorithms. But it would still have O(log
N) performance if it divided the remaining items by a factor of 1/10th and
made lots of progress at each step, or if it divided the items by a factor of
9/10ths and made relatively little progress.

The logarithmic function log(N) grows relatively slowly as N increases, so
algorithms with O(log N) performance generally are fast enough to be
useful.

Sort N

Some algorithms have O(sqrt(N)) performance (where sqrt is the square
root function), but they're not common, and none are covered in this book.
This function grows very slowly but a bit faster than log(N).

27

N

The FindLargest algorithm described in the earlier section “Rule 1”
has O(N) performance. See that section for an explanation of why it has
O(N) performance.

The function N grows more quickly than log(N) and sqrt(N) but still not
too quickly, so most algorithms that have O(N) performance work quite
well in practice.

NlogN

Suppose an algorithm loops over all the items in its problem set and then,
for each loop, performs some sort of O(log N) calculation on that item. In
that case, the algorithm has O(N x log N) or O(N log N) performance.

Alternatively, an algorithm might perform some sort of O(log N)
operation and, for each step in it, do something to each of the items in the
problem.

For example, suppose you have built a sorted tree containing N items as
described earlier. You also have an array of N values and you want to
know which values in the array are also in the tree.

One approach would be to loop through the values in the array. For each
value, you could use the method described earlier to search the tree for
that value. The algorithm examines N items and for each it performs
log(N) steps so the total runtime is O(N log N).

Many sorting algorithms that work by comparing items have an O(N log
N) runtime. In fact, it can be proven that any algorithm that sorts by
comparing items must use at least O(N log N) steps, so this is the best you
can do, at least in Big O notation. Some algorithms are still faster than
others because of the constants that Big O notation ignores.

N2
An algorithm that loops over all its inputs and then for each input loops

over the inputs again has O(N?) performance. For example, the
ContainsDuplicates algorithm described earlier, in the section

28

“Rule 4,” runs in O(Nz) time. See that section for a description and
analysis of the algorithm.

Other powers of N, such as O(N’) and O(N*), are possible and are
obviously slower than O(Nz).

An algorithm is said to have polynomial runtime if its runtime involves
any polynomial involving N. O(N), O(Nz), O(N®), and even O(N4OOO) are
all polynomial runtimes.

Polynomial runtimes are important because in some sense these problems
can still be solved. The exponential and factorial runtimes described next
grow extremely quickly, so algorithms that have those runtimes are
practical for only very small numbers of inputs.

2N

Exponential functions such as 2 grow extremely quickly, so they are
practical for only small problems. Typically algorithms with these
runtimes look for optimal selection of the inputs.

For example, consider the knapsack problem. You are given a set of
objects that each has a weight and a value. You also have a knapsack that
can hold a certain amount of weight. You can put a few heavy items in the
knapsack, or you can put lots of lighter items in it. The challenge is to
select the items with the greatest total value that fit in the knapsack.

This may seem like an easy problem, but the only known algorithms for
finding the best possible solution essentially require you to examine every
possible combination of items.

To see how many combinations are possible, note that each item is either
in the knapsack or out of it, so each item has two possibilities. If you
multiply the number of possibilities for the items, you get 2 x 2 x ... X 2 =

2N total possible selections.

Sometimes you don't have to try every possible combination. For example,
if adding the first item fills the knapsack completely, you don't need to add
any selections that include the first item plus another item. In general,
however, you cannot exclude enough possibilities to narrow the search
significantly.

29

For problems with exponential runtimes, you often need to use
heuristics—algorithms that usually produce good results but that you
cannot guarantee will produce the best possible results.

N!

The factorial function, written N! and pronounced “N factorial,” is defined
for integers greater than 0 by N! = 1 x 2 x 3 x ... x N. This function
grows much more quickly than even the exponential function 2N.
Typically algorithms with factorial runtimes look for an optimal
arrangement of the inputs.

For example, in the traveling salesman problem (TSP), you are given a list
of cities. The goal is to find a route that visits every city exactly once and
returns to the starting point while minimizing the total distance traveled.

This isn't too hard with just a few cities, but with many cities the problem
becomes challenging. The most obvious approach is to try every possible
arrangement of cities. Following that algorithm, you can pick N possible
cities for the first city. After making that selection, you have N — 1
possible cities to visit next. Then there are N — 2 possible third cities, and
so forth, so the total number of arrangements is N x (N—1) x (N—2) x ...
x 1=NL

Visualizing Functions

Table 1.1 shows a few values for the runtime functions described in the
preceding sections so that you can see how quickly these functions grow.

Table 1.1 Function Values for Various Inputs

30

Figure 1.2 shows a graph of these functions. Some of the functions have
been scaled so that they fit better on the graph, but you can easily see
which grows fastest when x grows large. Even dividing by 100 doesn't
keep the factorial function on the graph for very long.

Figure 1.2 The log, sqrt, linear, and even polynomial functions grow at a
reasonable pace, but exponential and factorial functions grow incredibly
quickly.

31

Practical Considerations

Although theoretical behavior is important in understanding an algorithm's
runtime behavior, practical considerations also play an important role in
real-world performance for several reasons.

The analysis of an algorithm typically considers all steps as taking the
same amount of time even though that may not be the case. Creating and
destroying new objects, for example, may take much longer than moving
integer values from one part of an array to another. In that case an

32

algorithm that uses arrays may outperform one that uses lots of objects
even though the second algorithm does better in Big O notation.

Many programming environments also provide access to operating system
functions that are more efficient than basic algorithmic techniques. For
example, part of the insertionsort algorithm requires you to move some of
the items in an array down one position so that you can insert a new item
before them. This is a fairly slow process and contributes greatly to the
algorithm's O(Nz) performance. However, many programs can use a
function (such as RtlMoveMemory in .NET programs and
MoveMemory in Windows C++ programs) that moves blocks of
memory all at once. Instead of walking through the array, moving items
one at a time, a program can call these functions to move the whole set of
array values at once, making the program much faster.

Just because an algorithm has a certain theoretical asymptotic
performance doesn't mean you can't take advantage of whatever tools your
programming environment offers to improve performance. Some
programming environments also provide tools that can perform the same
tasks as some of the algorithms described in this book. For example, many
libraries include sorting routines that do a very good job of sorting arrays.
Microsoft's .NET Framework, used by C# and Visual Basic, includes an
Array.Sort method that uses an implementation that you are unlikely
to beat using your own code—at least in general. For specific problems
you can still beat Array.Sort 's performance if you have extra
information about the data. (For more information, read about
countingsort in Chapter 6.)

Special-purpose libraries may also be available that can help you with
certain tasks. For example, you may be able to use a network analysis
library instead of writing your own network tools. Similarly, database
tools may save you a lot of work building trees and sorting things. You
may get better performance building your own balanced trees, but using a
database is a lot less work.

If your programming tools include functions that perform the tasks of one
of these algorithms, by all means use them. You may get better
performance than you could achieve on your own, and you'll certainly
have less debugging to do.

33

Finally, the best algorithm isn't always the one that is fastest for very large
problems. If you're sorting a huge list of numbers, quicksort usually
provides good performance. If you're sorting only three numbers, a simple
series of If statements will probably give better performance and will be
a lot simpler. Even if quicksort does give better performance, does it
matter whether the program finishes sorting in 1 millisecond or 2? Unless
you plan to perform the sort many times, you may be better off going with
the simpler algorithm that's easier to debug and maintain rather than the
complicated one to save 1 millisecond.

If you use libraries such as those described in the preceding paragraphs,
you may not need to code all these algorithms yourself, but it's still useful
to understand how the algorithms work. If you understand the algorithms,
you can take better advantage of the tools that implement them even if you
don't write them. For example, if you know that relational databases
typically use B-trees (and similar trees) to store their indices, you'll have a
better understanding of how important pre-allocation and fill factors are. If
you understand quicksort, you'll know why some people think the .NET
Framework's Array.Sort method is not cryptographically secure.
(This is discussed in the section “Using Quicksort” in Chapter 6.)

Understanding the algorithms also lets you apply them to other situations.
You may not need to use mergesort, but you may be able to use its
divide-and-conquer approach to solve some other problem on multiple
processors.

Summary

To get the most out of an algorithm, you not only need to understand how
it works, but you also need to understand its performance characteristics.
This chapter explained Big O notation, which you can use to study an
algorithm's performance. If you know an algorithm's Big O runtime
behavior, you can estimate how much the runtime will change if you
change the problem size.

This chapter also described some algorithmic situations that lead to
common runtime functions. Figure 1.2 showed graphs of these equations
so that you can get a feel for just how quickly each grows as the problem

34

size increases. As a rule of thumb, algorithms that run in polynomial time
are often fast enough that you can run them for moderately large
problems. Algorithms with exponential or factorial runtimes, however,
grow extremely quickly as the problem size increases, so you can run
them only with relatively small problem sizes.

Now that you have some understanding of how to analyze algorithm
speeds, you're ready to study some specific algorithms. The next chapter
discusses numerical algorithms. They tend not to require elaborate data
structures, so they usually are quite fast.

Exercises

Asterisks indicate particularly difficult problems.
1. The section “Rule 4” described a ContainsDuplicates

algorithm that has runtime O(N?). Consider the following improved
version of that algorithm:

Boolean: ContainsDuplicates (Integer: arrayl[])
// Loop over all of the array's items
except the last one.

For 1 = 0 To <largest index> - 1
// Loop over the items after item 1i.
For 3 = 1 + 1 To <largest index>
// See 1if these two items are
duplicates.
If (arrayl[i] == arrayl[j]) Then
Return True
Next j
Next 1

// If we get to this point, there are no
duplicates.
Return False
End ContainsDuplicates
What is the runtime of this new version?

2. Table 1.1 shows the relationship between problem size N and
various runtime functions. Another way to study that relationship is

35

to look at the largest problem size that a computer with a certain
speed could execute within a given amount of time.

For example, suppose a computer can execute 1 million algorithm
steps per second. Consider an algorithm that runs in O(N?) time. In
1 hour the computer could solve a problem where N = 60,000
(because 60,000 = 3,600,000,000, which is the number of steps the
computer can execute in 1 hour).

Make a table showing the largest problem size N that this computer
could execute for each of the functions listed in Table 1.1 in one
second, minute, hour, day, week, and year.

3. Sometimes the constants that you ignore in Big O notation are
important. For example, suppose you have two algorithms that can
do the same job. The first requires 1,500 x N steps, and the other
requires 30 x N° steps. For what values of N would you choose
each algorithm?

4. *Suppose you have two algorithms—one that uses N*/75-N?/
4 + N + 10 steps, and one that uses N / 2 + 8 steps. For what values
of N would you choose each algorithm?

5. Suppose a program takes as inputs N letters and generates all
possible unordered pairs of the letters. For example, with inputs
ABCD, the program generates the combinations AB, AC, AD, BC,
BD, and CD. (Here unordered means that AB and BA count as the
same pair.) What is the algorithm's runtime?

6. Suppose an algorithm with N inputs generates values for each
unit square on the surface of an N x N x N cube. What is the
algorithm's runtime?

7. Suppose an algorithm with N inputs generates values for each
unit cube on the edges of an N X N x N cube, as shown in Figure
1.3. What is the algorithm's runtime?

Figure 1.3 This algorithm generates values for cubes on a cube's
“skeleton.”

36

8. *Suppose you have an algorithm that, for N inputs, generates a
value for each small cube in the shapes shown in Figure 1.4.
Assuming that the obvious hidden cubes are present so that the
shapes in the figure are not hollow, what is the algorithm's runtime?

37

Figure 1.4 This algorithm adds one more level to the shape as N
increases.

9. Can you have an algorithm without a data structure? Can you
have a data structure without an algorithm?

10. Consider the following two algorithms for painting a fence:

Algorithml ()
For 1 = 0 To <number of boards in fence> -

<paint board number i>
Next i
End Algorithml

Algorithm?2 (Integer: first board, Integer:
last _board)
If (first board == last board) Then

// There's only one board. Just paint
it.
<paint board number first board>
Else
// There's more than one board. Divide
the boards
// into two groups and recursively
paint them.
Integer: middle board = (first board +
last board) / 2
Algorithm2 (first board, middle board)
Algorithm2 (middle board, last board)

38

End If
End Algorithm?2

What are the runtimes for these two algorithms, where N is the
number of boards in the fence? Which algorithm is better?

11. “Fibonacci numbers can be defined recursively by the following
rules:

Fibonacci(0) = 1

Fibonacci(l) = 1

Fibonacci (n) = Fibonacci(n - 1) + Fibonacci(n
- 2)

The Fibonacci sequence starts with the values 1, 1, 2, 3, 5, 8, 13, 21,
34, 55, 89.

How does the Fibonacci function compare to the runtime functions
shown in Figure 1.27

39

Chapter 2
Numerical Algorithms

Numerical algorithms calculate numbers. They perform such tasks as
randomizing values, breaking numbers into their prime factors, finding
greatest common divisors, and computing geometric areas.

All these algorithms are useful occasionally, but they also demonstrate
useful algorithmic techniques such as adaptive algorithms, Monte Carlo
simulation, and using tables to store intermediate results.

Randomizing Data

Randomization plays an important role in many applications. It lets a
program simulate random processes, test algorithms to see how they
behave with random inputs, and search for solutions to difficult problems.
Monte Carlo integration, which is described in the later section
“Performing Numerical Integration,” uses randomly selected points to
estimate the size of a complex geometric area.

The first step in any randomized algorithm is generating random numbers.

Generating Random Values

Even though many programmers talk about “random” number generators,
any algorithm used by a computer to produce numbers is not truly
random. If you knew the details of the algorithm and its internal state, you
could correctly predict the “random” numbers it generates.

To get truly unpredictable randomness, you need to use a source other
than a computer program. For example, you could use a radiation detector
that measures particles coming out of a radioactive sample to generate
random numbers. Because no one can predict exactly when the particles
will emerge, this is truly random.

Other possible sources of true randomness include dice rolls, analyzing
static in radio waves, and studying Brownian motion. Random.org

40

measures atmospheric noise to generate random numbers. (You can go to
http://www.random.org to get true random numbers.)

Unfortunately, because these sorts of true random-number generators
(TRNG) are relatively complicated and slow, most applications use a
faster pseudorandom number generator (PRNG) instead. For many
applications, if the numbers are in some sense “random enough,” a
program can still make use of them and get good results.

Generating Values

One simple and common method of creating pseudorandom numbers is a
linear congruential generator, which uses the following relationship to
generate numbers:

A, B, and M are constants.

The value of X initializes the generator so that different values for Xo
produce different sequences of numbers. A value that is used to initialize
the pseudorandom number generator, such as Xy in this case, is called the
seed.

Because all the values in the number sequence are taken modulo M, after
at most M numbers the generator produces a number it produced before,
and the sequence of numbers repeats from that point.

As a very small example, suppose A =7, B=15, and M = 11. If you start
with Xo = 0, the previous equation gives you the following sequence of
numbers:

41

http://www.random.org

Because X0 = X = 0, the sequence repeats.

The values 0, 5, 7, 10, 9, 2, 8, 6, 3, 4 look fairly random. But now that you
know the method that the program uses to generate the numbers, if
someone tells you the method's current number, you can correctly predict
those that follow.

Some PRNG algorithms use multiple linear congruential generators with
different constants and then select from among the values generated at
each step to make the numbers seem more random and to increase the
sequence's repeat period. That can make programs produce more
random-seeming results, but those methods are still not truly random.

Note

Most programming languages have built-in PRNG methods that you can use instead of
writing your own. Those methods generally are reasonably fast and produce very long

42

sequences of numbers before they repeat, so for most programs you can simply use them
instead of writing your own.

One feature of PRNGs that is sometimes an advantage is that you can use
a particular seed value to generate the same sequence of “random” values
repeatedly. That may seem like a disadvantage, because it means that the
numbers are more predictable, but being able to use the same numbers
repeatedly can make some programs much easier to debug.

Being able to repeat sequences of numbers also lets some applications
store complex data in a very compact form. For example, suppose a
program needs to make an object perform a long and complicated
pseudorandom walk on a map. The program could generate the walk and
save all its coordinates so that it can redraw the route later. Alternatively,
it could just save a seed value. Then, whenever it needs to draw the route,
it can use the seed to reinitialize a PRNG so that it produces the same
walk each time.

The RandomTrees program, shown in Figure 2.1, uses seed values to
represent random trees. Enter a seed and click Go to generate a random
tree. If two seed values differ by even 1, they produce very different
results.

Figure 2.1 Even slightly different seeds lead to very different random
trees.

43

The RandomTrees program uses the seed value you enter to generate
drawing parameters such as the number of branches the tree creates at
each step, the angle at which the branches bend from their parent branch,
and how much shorter each branch is than its parent. You can download
the program from the book's website to see the details.

If you enter the same seed number twice, you produce the same tree both
times.

Cryptographically Secure PRNGs

Any linear congruential generator has a period over which it repeats, and that
makes it unusable for cryptographic purposes.

For example, suppose you encrypt a message by using a PRNG to generate a value
for each letter in the message and then adding that value to the letter. For example,
the letter A plus 3 would be D, because D is three letters after A in the alphabet. If
you get to Z, you wrap around to A. So, for example, Y +3 =B.

This technique works quite well as long as the sequence of numbers is random,
but a linear congruential generator has a limited number of seed values. All you

44

need to do to crack the code is to try decrypting the message with every possible
seed value. For each possible decryption, the program can look at the distribution
of letters to see if the result looks like real text. If you picked the wrong seed,
every letter should appear with roughly equal frequency. If you guessed the right
seed, some letters, such as E and T, will appear much more often than other
letters, such as J and X. If the letters are very unevenly distributed, you have
probably guessed the seed.

This may seem like a lot of work, but on a modern computer it's not very hard. If
the seed value is a 32-bit integer, only about 4 billion seed values are possible. A
modern computer can check every possible seed in just a few seconds or, at most,
minutes.

A cryptographically secure pseudorandom number generator (CSPRNG) uses
more complicated algorithms to generate numbers that are harder to predict and to
produce much longer sequences without entering a loop. They typically have
much larger seed values. A simple PRNG might use a 32-bit seed. A CSPRNG
might use keys that are 1,000 bits long to initialize its algorithm.

CSPRNG:s are interesting and very “random,” but they have a couple of
disadvantages. They are complicated, so they're slower than simpler algorithms.
They also may not allow you to do all the initialization manually, so you may be
unable to easily generate a repeatable sequence. If you want to use the same
sequence more than once, you should use a simpler PRNG. Fortunately, most
algorithms don't need a CSPRNG, so you can use a simpler algorithm.

Ensuring Fairness

Usually programs need to use a fair PRNG. A fair PRNG is one that
produces all its possible outputs with the same probability. A PRNG that
is unfair is called biased. For example, a coin that comes up heads
two-thirds of the time is biased.

Many programming languages have methods that produce random
numbers within any desired range. But if you need to write the code to
transform the PRNG's values into a specific range, you need to be careful
to do so in a fair way.

A linear congruential generator produces a number between 0 (inclusive)
and M (exclusive), where M is the modulus used in the generator's
equation:

45

Usually a program needs a random number within a range other than 0 to
M. An obvious but bad way to map a number produced by the generator
into a range Min to Max is to use the following equation:

For example, to get a value between 1 and 100, you would calculate the
following:

The problem with this is that it may make some results more likely than
other